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Active control of buildings and structures for reducing damage due to earthquake and
other environmental forces represents a relatively new research area. Most of the recent
studies on this area are based on the applications of traditional linear quadratic regulator
(LQR) control to the earthquake-excited structures. This paper presents the analytical
solution of the modi"ed linear quadratic regulator (MLQR) problem including a parameter
a known as system stability order in the presence of unknown seismic excitation. The
resulting closed}open loop active control force depends on the system state, seismic
excitation and a. An approximate solution of the problem is based on the real-time
prediction of near-future excitation. Since the primary focus of this study is on the relation
between the system stability order a and the prediction of near-future excitation, numerical
simulations of a three-storey undamped structure subjected to an El Centro earthquake are
performed for di!erent a values. It is shown that the relative displacements can be reduced
signi"cantly for each selected a value as the near-future excitation is predicted precisely and
there is no signi"cant increase in the control forces. The results also show that there is no
need to predict the distant-future excitation to be able to achieve a given reduction in
relative displacements as the system stability order a is increased. It is also shown that
the accelerations increase in general after the fourth-step ahead prediction for a given a while
they decrease as a increases.
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1. INTRODUCTION

Active control of structures for earthquake hazard mitigation has been the subject of
considerable research since the pioneer work of Yao [1]. Several di!erent active control
algorithms have been proposed in the past three decades. Recent developments in the
subject have been extensively reviewed by Soong [2] and Housner et al. [3].

Determination of the active control force is based on the minimization of a given
performance index with respect to the control force under the constraint conditions de"ned
by the equation of motion and the initial conditions. Once the performance index has been
selected, its minimization can be performed by using the minimum principle of Pontryagin
[4] or the method of dynamic programming of Bellman [5]. In the "rst approach, which is
a variational principle, optimal control is derived by minimizing a given function known as
the Hamiltonian. In practice, the admissible control forces are bounded and there is a limit
0022-460X/01/440561#16 $35.00/0 ( 2001 Academic Press



Figure 1. Schematic representation of active structural control system.
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on their magnitudes. This approach is applicable to control problems with constraints on
the admissible control forces. The second approach uses the principle of optimality, which
states that a control policy that is optimal over the whole control interval is also optimal
over all subintervals. With few exceptions, since the solution of equations in the second
approach is more di$cult compared to the "rst approach it has been suggested to use the
second approach as a check for su$ciency. The second approach is widely used in the
optimization of discrete, multi-stage systems. Both approaches are complementary tools for
the solutions of the optimal control problems even though they result in the same
conditions for many problems. However, one formulation may be better than the other to
solve a particular problem.

A basic con"guration of an active control system is shown schematically in Figure 1.
Classical active control algorithms in which the quadratic performance index is de"ned as
an integral function of the system response and control force over the whole control interval
have been widely used in structural active control applications. These algorithms can be
classi"ed as closed-loop, open-loop and closed}open loop. In closed-loop control, active
control force is regulated by the state vector which is the response of the structure. If the
computation of the active control force requires only the seismic excitation information,
then this control algorithm can be considered as open-loop. When the state vector and the
external excitation are used in the computation of the active control force, this results in
a closed}open loop control algorithm.

Among these three algorithms, only a classical closed-loop algorithm is applicable to
earthquake-excited structures. However, since it requires the earthquake excitation to
vanish within the control interval de"ned as a time duration in which the control process is
executed or to be a white noise stochastic process, which is not realistic in most cases, it does
not satisfy the optimality condition. On the other hand, even though the classical
closed}open loop and open-loop control algorithms are superior to the closed-loop control,
since their solutions require the whole knowledge of the external seismic excitation which is
not known a priori, they are not applicable to structures subjected to seismic forces.

In the past decade, Yang et al. [6, 7], Masri et al. [8], Rodellar et al. [9] and Lee and
Kozin [10] have made excellent contributions to overcome this de"ciency of the classical
active control algorithms. In addition to these methods, active control of structures has
been investigated as a tracking problem using dynamic programming [11]. Iemura et al.
[12] have also proposed a new closed}open loop control based on the stochastic control
theory in which an energy-based stochastic criterion is employed by considering the
structure and the ground as a single system. Another instantaneous closed}open loop
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control that takes into account the seismic energy input to the structure has been developed
in reference [13]. Aldemir and Bakioglu [14] proposed a semiactive closed}open loop
control algorithm by forcing the rate of change of the system energy to be as negative as
possible.

It is known that the system stability is determined by the real parts of the eigenvalues of
the closed-loop control system. If all the eigenvalues have negative real parts, the solution
approaches the equilibrium point as time increases, so that the solution is asymptotically
stable. In one particular case, if all the eigenvalues have negative real parts less than some
negative real number !a, a'0, then it is said that the system as a degree of stability !a
[15]. These types of systems with a certain stability order !a can be designed easily by
using LQR theory.

This paper derives the analytical solution of the modi"ed linear quadratic regulator
(MLQR) problem including the system stability order !a without ignoring the unknown
disturbance while the standard LQR problem corresponds to a special case of the MLQR
problem in which a"0. The resulting active control force depends on the state vector,
external excitation and the stability order a which has a contribution to the control force in
both feed-forward and feed-back terms. Approximate solution of the closed}open loop
control is carried out by considering the near-future excitation in#uence. In a numerical
example, responses of a three-storey lumped mass undamped structure with di!erent
a values are examined to investigate the relation between the stability order a and the
near-future excitation. Numerical results show that the reduction in the relative
displacements will increase independently from the stability order a as the more
distant-future excitation is predicted precisely. The signi"cance of each predicted
earthquake acceleration value in the solution increases as the system stability order a is
increased. Therefore, a given performance in terms of the reduction in relative
displacements can be achieved by predicting less near-future excitation values for higher
values of a. Numerical results for the peak values of the storey accelerations show that the
accelerations decrease as the stability order a increases while they increase in general after
the fourth-step ahead prediction for a given a.

2. THEORY

2.1. BUILDING MODEL

A linear building structure modelled by an n-degree-of-freedom lumped
mass}spring}dash pot system subjected to a horizontal earthquake ground acceleration
xK g(t) and the control U(t) is shown in Figure 2. In the idealized model, the lumped mass
approach in which the mass of the structure is assumed to be concentrated at #oor levels is
used. The columns of the building are assumed to be massless and modelled as a linear
elastic spring with a linear dash pot in parallel. The control is implemented by means of the
actuators installed in every storey unit and instead of the actuators, the actuator control
forces are shown in Figure 2. For the purpose of deriving the equations of motion,
a free-body diagram of the ith storey is given in Figure 3.

The equation of motion for the ith storey can be written as
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Figure 2. Idealized structural model.

Figure 3. Free-body diagram for the ith storey.
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where m
i
, x

i
, k

i
, c

i
, u

i
, (i"1,2, n) are the mass, relative displacement with respect to the

ground, linear elastic sti!ness coe$cient, linear viscous damping coe$cient and the control
force for the ith storey respectively. It is assumed that the relative displacements (x

i
),

velocities (xR
i
) and the ground accelerations (xK g(t)) can be measured in real time by the

sensors installed in every storey unit. If equation (1) is restated for i"1,2, n, then the
governing equations of motion are derived as follows:
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Using the matrix}vector notation, the system of equations given above in discrete form can
also be expressed as

MXG (t)#KX(t)#CX0 (t)"mxK g(t)#LU(t), (3)
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where X(t)"[x
1
, x
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,2,x
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]T is the n-dimensional response vector denoting the relative

displacements (here T indicates the transpose of vector and matrix); M, C and K are
(n]n)-dimensional positive-de"nite matrices corresponding to the mass, viscous damping
and the sti!ness of the structure, respectively; m"![m
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]T; L is the

(n]n)-dimensional location matrix of n controllers; U (t) is the n-dimensional active control
force vector. The matrices M, K, C and L are of the following form:
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Now, in order to formulate the optimal controller, equation (3) can be expressed in
a state-space form as

Z0 "AZ#BU#HxK g (t), Z(0)"0, (5)

where

Z(t)"C
X(t)

X0 (t)D , A"C
0

!M~1K

I

!M~1CD , B"C
0

M~1LD , H"C
0

M~1mD . (6)

Optimal active control law is derived by the minimization of the performance measure Ja ,
a modi"cation to the classical quadratic performance index [15],

Ja"P
t

0

e2at (ZTQZ#UTRU) dt, (7)

where t
1

is a duration de"ned to be longer than that of the earthquake ground acceleration;
a is a positive number which represents the stability order of the system, Q is a (2n]2n)
dimensional positive semide"nite symmetric weighting matrix for the structure response,
and R is an (n]n) dimensional positive de"nite symmetric weighting matrix for the control
force. As long as the performance-measure matrices Q and R are selected as positive
semide"nite and positive de"nite, respectively, the resulting optimal solution will be
asymptotically stable. Numerical values for the elements of Q and R matrices are assigned
according to the relative importance of the state variables and the control forces in the
minimization procedure in order to adjust the power requirements in the actuators. If it is
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required to achieve a signi"cant decrease in structure response in time domain, larger values
must be assigned to the elements of the weighting matrix Q than those of the weighting
matrix R. Some approximate rules for the selection of these performance-measure matrices
can be found in references [2, 16].

2.2. ANALYTICAL SOLUTION OF THE MLQR PROBLEM

For the solution of the MLQR problem given by equations (5) and (7), it is necessary to
express the problem in standard LQR form. For this purpose, introduce the variables

1(t)"eatZ(t); m (t)"eatU(t). (8)

Using these new variables, equations (5) and (7) can be rewritten as

1Q (t)"A1 1 (t)#Bm(t)#f1 (t) ; 1(0)"0, (9)

Ja"P
t1

0

(1TQ1#mTRm) dt, (10)

where A1 "A#aI and f1 (t)"eatHxK g (t). It should be noted here that the new variable 1 (t) is
not the actual state of the system. So, upon solving the standard LQR problem given by
equations (9) and (10), the resulting solution must be expressed in terms of the actual state
Z(t) and the actual control force U(t) to be able to interpret the behaviour of the structure
under the proposed control easily. Firstly, the optimal active control force U (t) will be
found and then substituted into equation (5) to get the closed-loop system. As explained in
section 1, if all the eigenvalues of the closed-loop system matrix have negative real parts,
then the system under the proposed control is asymptotically stable.

Analytical solution of the linear regulator problem is derived generally by using
Pontryagin's minimum principle which gives the necessary condition of optimality, but in
general it is not a su$cient condition. De"ning the Hamiltonian

H"1TQ1#mTRm#kT[A1 1 (t)#Bm(t)#eatHxK g(t)] (11)

optimality conditions to be satis"ed are obtained as follows:
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1
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LH

Lm
"0"2Rm(t)#BTk(t), (14)

where k (t) is a 2n vector of Lagrangian multipliers. Depending on the type of k (t),
closed-loop, open-loop and closed}open loop control laws can easily be derived. For the
closed}open loop solution, assume that k (t) has the form

k(t)"P (t)1(t)#r (t). (15)
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Inserting k (t) and k0 (t) in terms of P (t), 1(t) and r(t) into equations (12)}(14), gives the
following equation:

[P0 (t)#P (t)A1 !1
2
P (t)BR~1BTP(t)#A1 TP (t)#2Q]1(t)

#r5 (t)![1
2
P (t)BR~1BT!A1 T]r(t)#P (t)HeatxK g(t)"0. (16)

Equation (16) can be satis"ed for all times if and only if the equations
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are valid. Optimal closed}open loop control force m (t) is derived from equations (14) and
(15) as in the following form:

m(t)"!1
2

R~1BT[P (t)1(t)#r(t)]. (19)

For closed-loop control equation (19) becomes

m(t)"!1
2
R~1BTP(t)1 (t). (20)

Using the transformations given by equation (8), equation (19) can be rewritten in terms of
Z(t) and U (t) as

U(t, Z)"!1
2

R~1BT(eatr#PZ). (21)

Equations (18) and (21) can also be expressed as

u5 !Eu#PHxK g (t)"0; u (t
1
)"0, (22)

U (t, Z)"!1
2

R~1BT(u#PZ), (23)

where

u (t)"e~atr; E"1
2
PBR~1BT!A2 T; A2 "A#2aI. (24)

In equation (23), the coe$cient of Z is called feed-back term and the rest is called
feed-forward term. Consequently, optimal control force which minimizes the performance
function given by equation (7) under the constraint given by equation (5) can be calculated
by equation (23) such that P and u are the solutions of equations (17) and (22). If
equation (23) is substituted into equation (5), then the equation which describes the
behaviour of the structure under optimal closed}open loop control is given as

Z0 "A3 Z#u6 (t), Z(0)"0, (25)

where

A3 "A!1
2

BR~1BTP; u6 (t)"!1
2
BR~1BTu#HxK g (t). (26)

3. NUMERICAL SOLUTION

Solution of the closed}open loop optimal control problem formulated as the MLQR
problem is reduced to the solution of the "rst order matrix di!erential equations and
derived by using the Taylor Series method. The MLQR problem requires the solutions of
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three matrix di!erential equations for P (t), u(t) and Z(t) given by equations (17), (22) and
(25) respectively. The solution of the matrix Riccati equation which does not include the
excitation term xK g (t) approaches a constant value after a short time [2] in structural control
applications. So, it is generally solved as an algebraic equation by neglecting the derivative
term. However, backward solution of equation (22) requires a prior knowledge of the
earthquake excitation in [0, t

1
], which is not possible. Approximate solution forward in

time for u (t) will be carried out including the near-future in#uence of the earthquake
excitation. Once the solutions for P (t) and u (t) are obtained, the forward solution of
equation (25) can easily be obtained.

For the derivation of the backward solution of equation (22), "rstly assume that it has an
initial condition u

0
at t"0 as given below:

u5 (t)"Eu (t)#l(t), u (0)"u
0
, (27)

where the non-homogeneous term

l (t)"!PHxK g(t). (28)

Equation (24) shows that E matrix is a constant matrix since the Riccati matrix P(t) is
assumed to be constant. Then, the complete solution of equation (27) is the sum of the
homogeneous solution and the particular solution and given by [17]
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However, the terminal condition for u is given at time t
1
"mh as u (t

1
)"u

m
"0. Here,

m and h denote the number of equal intervals and the time step, respectively, in the control
interval [0, t

1
]. Using the condition u (t
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m
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as follows:
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Substituting u
0

given by equation (33) into equation (30) and writing equation (30) for any
point j results in the following equation:
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Equation (34) shows that u
j
values at any point j can be calculated only if the p

i
(i'j) terms,

which are completely beyond the point j, are known a priori. p
i
(i'j ) terms cannot be

known a priori since they include the unknown excitation terms. However, their near-future
values can be predicted by using their known values in the past. Details of the prediction
process are given in reference [18]. If the sound norm of the matrix Sj~i ( j!i(0),
( DDSj~i DD

2
"o1@2

min
[(Sj~i)TSj~i] where o

min
[(Sj~i)TSj~i] denotes the maximum eigenvalue of

the matrix [(Sj~i)TSj~i]) decreases sharply with the increasing i, including the near-future
excitation in#uence in the solution gives a good approximation to optimal solution [18].

4. NUMERICAL EXAMPLE

The primary focus of this paper is on the relationship between the stability order a and
the near-future excitation. For this purpose, the peak storey relative displacements,
accelerations and the control forces of a three-storey undamped structure are examined for
di!erent a values. Firstly, the results for the standard LQR (a"0) case and then the results
for MLQR control are presented. Using the idealized description of the n-degree-of-freedom
structure given in Figure 2, the example structure is characterized by the following system
matrix A:

A"C
0 I

!M~1K !M~1CD"
0
3

I
3

!1)8375 0)8704 0

0)8704 !1)3540 0)4835 0
3

0 0)4835 !0)4835

, (35)

where 0
3

and I
3

are (3]3) zero and identity matrices. The weighting matrix R(3]3) for the
active control force and the weighting matrix Q(6]6) for the structure response are selected
as follows:

R"

1 0 0

0 1 0

0 0 1

*10~5, Q"

10)5 7)875 4)2 10)5 7)875 4)2

7)35 4)2 7)875 7)35 4)2

3)675 4)2 4)2 3)675

10)5 7)875 4)2

symm 7)35 4)2

3)675

. (36)

The weighting matrix R (3]3) is a positive-de"nite matrix since its all eigenvalues are
positive. The weighting matrix Q(6]6) is a positive semi-de"nite matrix since it has three
zero eigenvalues and three positive eigenvalues; 1)0999, 3)5343, 38)4158. The 1940 El Centro
ground motion which is one of the earliest recorded and most widely used near-"eld ground
motions is used to excite the structure. The acceleration history of the North}South El
Centro ground motion is shown in Figure 4. Dynamic responses of the example structure
subjected to El Centro ground motion which is shown in Figure 4 have been investigated
for the cases consisting of uncontrolled, closed-loop control, optimal closed}open loop
control with known earthquake time history and approximate closed}loop control with
near-future earthquake excitation in#uence for a"0 case.

Relative displacements of the "rst and the third #oor for the "rst 10 s which include the
peak values are shown in Figures 5 and 6 for the cases of optimal closed}open loop
assuming that the earthquake excitation is known a priori and approximate closed-open



Figure 4. El Centro earthquake.

Figure 5. Relative displacements of the "rst #oor (Standard LQR, a"0): , approximate solution;
, optimal closed}open loop.
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loop with six-step ahead prediction. Figures 5 and 6 show that the agreement between the
optimal and the approximate solutions is better for the "rst #oor than the third #oor except
for the maximum values.

Peak values for the storey relative displacements (x
max

), accelerations (xK
max

) and the
control forces(u

max
) are shown in Table 1. Table 1 shows that the optimal closed}open loop

control is the best in terms of the reduction is response and control force. However, it can
only serve as an ideal optimal case to check the control e$ciency of the other control
algorithms. Numerical results also show that the approximate closed}open loop control
with prediction results in smaller peak responses and control forces when compared to the
closed-loop control.

Now, the relationship between the stability order a and closed-loop system matrix A3 will
be investigated. Since the closed-loop system matrix A3 "A!1

2
BR~1BTP is dependent on

the stability order a through P, as the stability order a changes, the closed-loop system
matrix A3 and its eigenvalues will change as well. For the uncontrolled structure A3 "A and
eigenvalues of A for the investigated problem are obtained as 50)425i, !50)425i, 31)102i,
!31)102i, 12)868i,!12)868i. Since the real parts of all the eigenvalues are not negative, the



Figure 6. Relative displacements of the third #oor (Standard LQR, a"0): , approximate solution;
, optimal closed}open loop.

TABLE 1

¹raditional ¸QR (a"0)

x
max

(cm) xK
max

(m/s2) u
max

(kN)

Storey 1 2 3 1 2 3 1 2 3
No control force 4)90 8)58 12)72 10)07 14)40 18)49 * * *

Closed-loop (r (t)"0) 0)91 1)85 3)05 3)07 4)88 6)18 280 223 211
Optimal closed}open

loops 0)61 0)82 1)81 2)61 3)38 4)44 167 152 192

Approximate solution
1-step ahead prediction 0)82 1)66 2)75 2)70 4)41 5)61 278 212 195
2-step ahead prediction 0)76 1)52 2)48 2)65 4)09 4)96 285 206 182
3-step ahead prediction 0)73 1)41 2)23 2)79 3)91 4)26 283 203 173
4-step ahead prediction 0)72 1)33 2)00 3)04 3)88 3)58 275 200 167
5-step ahead prediction 0)73 1)29 1)81 3)32 3)96 3)36 264 209 166
6-step ahead prediction 0)74 1)26 1)67 3)57 4)14 3)42 253 214 175

sWith a priori knowledge of excitation.
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uncontrolled structure is not asymptotically stable. This is an obvious result for an
undamped structure with no energy dissipation. Eigenvalues of the closed-loop system
matrix A3 for a"0, 1, 2, 3, 4, 5 are given in Figure 7. As shown in Figure 7, the real parts of
all the eigenvalues of the closed-loop system matrix A3 for all a values are negative.
Therefore, the structure under optimal control force is asymptotically stable. It is also seen
from Figure 7 that the real parts of the eigenvalues move more into the left side of the
complex plane as a increases and these real parts are always less than !a. Therefore, a can
be treated as a measure of the system stability [15].

Now, the relation between a and the approximate solution of the optimal closed}open
loop control is examined. As mentioned before, approximate solution for equation (27) is



Figure 7. Eigenvalues of closed-loop system matrix A3 for di!erent a values: (a) a"0; (b) a"1; (c) a"2;
(d) a"3; (e) a"4; (f ) a"5.

Figure 8. Variation of ES~nE
2

with respect to n for di!erent a values: (a) a"0; (b) a"1; (c) a"2; (d) a"3;
(e) a"4.
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valid if ES~nE
2
decreases sharply with increasing n. The change of ES~nE

2
with respect to n is

shown in Figure 8 for di!erent a values. As shown in Figure 8, ES~nE
2
decreases quickly for

all a values as n increases. Therefore, approximate solution of equation (27) can be obtained
by predicting the near-future acceleration values of the unknown earthquake.

ES~nE
2

can in fact be treated as a measure of the contribution of the nth earthquake
acceleration value in the exact solution. If ES~1E

2
is greater than ES~2E

2
, then this means

that the "rst earthquake acceleration value is more signi"cant than the second earthquake
acceleration value in the solution. For this purpose, the change of ES~nE

2
with respect to

the stability order a is shown in Figure 9 for n"1, 2, 3, 4. Figure 9 illustrates that the
signi"cance of each earthquake acceleration value increases as the stability of the system



Figure 9. Variation of ES~nE
2

with respect to a for di!erent n values: (a) n"1; (b) n"2; (c) n"3; (d) n"4.

TABLE 2

M¸QR control (a"1)

x
max

(cm) xK
max

(m/s2) u
max

(kN)

Storey 1 2 3 1 2 3 1 2 3
Approximate solution

1-step ahead prediction 0)70 1)41 2)28 2)53 4)11 4)90 294 212 191
2-step ahead prediction 0)64 1)26 2)00 2)46 3)76 4)18 305 206 176
3-step ahead prediction 0)61 1)15 1)74 2)60 3)55 3)42 304 205 164
4-step ahead prediction 0)61 1)08 1)50 2)86 3)50 2)75 296 223 157
5-step ahead prediction 0)61 1)03 1)31 3)15 3)58 2)71 284 235 179
6-step ahead prediction 0)63 1)01 1)18 3)42 3)77 2)86 273 243 209

TABLE 3

M¸QR control (a"2)

x
max

(cm) xK
max

(m/s2) u
max

(kN)

Storey 1 2 3 1 2 3 1 2 3
Approximate solution

1-step ahead prediction 0)59 1)18 1)86 2)33 3)79 4)24 316 214 183
2-step ahead prediction 0)53 1)03 1)57 2)24 3)41 3)44 328 207 165
3-step ahead prediction 0)51 0)93 1)30 2)38 3)18 2)62 327 229 151
4-step ahead prediction 0)51 0)85 1)07 2)67 3)11 2)13 318 248 175
5-step ahead prediction 0)52 0)81 0)89 3)04 3)18 2)21 306 262 207
6-step ahead prediction 0)54 0)79 0)78 3)36 3)37 2)39 293 269 238
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increases. To be able to investigate the relationship between the system stability, prediction
and the system response, maximum storey relative displacements, accelerations and the
control forces of the example structure are calculated and given in Tables 2}5.

It is obvious for all a values that as the more distant-future earthquake acceleration
values are predicted precisely, relative displacements decrease signi"cantly. It is also well



TABLE 4

M¸QR control (a"3)

x
max

(cm) xK
max

(m/s2) u
max

(kN)

Storey 1 2 3 1 2 3 1 2 3
Approximate solution

1-step ahead prediction 0)50 0)98 1)50 2)13 3)48 3)65 338 216 173
2-step ahead prediction 0)44 0)84 1)21 2)02 3)05 2)79 351 228 154
3-step ahead prediction 0)42 0)73 0)94 2)22 2)80 1)91 350 251 164
4-step ahead prediction 0)42 0)66 0)71 2)58 2)71 1)66 340 271 195
5-step ahead prediction 0)44 0)62 0)57 2)96 2)78 1)82 327 284 227
6-step ahead prediction 0)46 0)62 0)51 3)29 2)97 2)06 313 292 259

TABLE 5

M¸QR control (a"4)

x
max

(cm) xK
max

(m/s2) u
max

(kN)

Storey 1 2 3 1 2 3 1 2 3
Approximate solution

1-step ahead prediction 0)42 0)82 1)22 1)94 3)17 3)18 359 223 163
2-step ahead prediction 0)36 0)68 0)92 1)88 2)70 2)26 372 246 151
3-step ahead prediction 0)34 0)57 0)66 2)09 2)42 1)33 370 270 178
4-step ahead prediction 0)35 0)51 0)45 2)45 2)32 1)32 360 284 209
5-step ahead prediction 0)37 0)48 0)36 2)84 2)38 1)55 345 303 242
6-step ahead prediction 0)40 0)48 0)35 3)19 2)61 1)95 329 311 274
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known that it is rather di$cult to predict the more distant-future earthquake acceleration
values since the prediction error increases. However, it is seen from Tables 2}5 that there is
no need to predict the more distant-future earthquake acceleration values to be able to
achieve a given reduction in displacements as the system stability increases. For example,
for a"0 and six-step ahead prediction (Table 1), maximum relative "rst, second and third
storey displacements are 0)74, 1)26 and 1)67 cm respectively. However, for a"3 and
one-step ahead prediction (Table 4), these displacements are 0)50, 0)98 and 1)50 cm. This
shows that just one-step ahead prediction with a"3 is more e!ective than six-step ahead
prediction with a"0 to achieve a given performance in terms of response reduction. It should
be pointed out that the magnitude of the control force increases as the relative displacements
fall. However, this increase is not signi"cant. Tables 2}5 also show that the "rst storey
accelerations increase as the number of ahead predictions increases for all a values while the
increase in the second and third #oor accelerations begins after the fourth-step ahead
predictions. However, accelerations decrease as the stability order a increases.

5. CONCLUSIONS

Instead of the standard linear quadratic regulator (LQR) control, which is frequently
employed for earthquake-excited structures, analytical solution of the modi"ed linear
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quadratic regulator (MLQR) problem including a parameter a, known in literature as
system stability order, is derived in the presence of unknown seismic excitation. The
derivation results in a closed}open loop control algorithm such that the active control force
depends on the structure state, seismic disturbance and a. The stability order a has
a contribution to the active control force in both feed-forward and feed-back terms.
Numerical solution of the problem is carried out approximately by including the
near-future excitation in#uence in the solution. In a numerical example, responses of
a three-storey undamped structure are examined for di!erent a values to investigate the
relationship between the stability order a and the near-future excitation. Numerical results
show that (a) the reduction in the relative displacements increases signi"cantly for each
selected a value as the more distant-future excitation is predicted precisely (it should be
noted here that there is an increase in the control forces, although this increase is not
signi"cant); (b) the signi"cance of each predicted earthquake acceleration value in the
solution increases as the system stability order a is increased; therefore, a given performance
in terms of the reduction in relative displacements can be achieved by predicting fewer
near-future excitation values for higher values of a; (c) the storey accelerations decrease as
the stability order a increases, although for a given a, accelerations increase in general
especially after the fourth-step ahead predictions.
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APPENDIX A: NOMENCLATURE

A system matrix
A3 closed-loop system matrix
C damping matrix
H Hamiltonian function
J performance index
K sti!ness matrix
L location matrix of controllers
M mass matrix
P Riccati matrix
Q weighting matrix for response
R weighting matrix for control
U control vector
X response vector
Z state vector
c
i

damping coe$cient for the ith storey
h time step
k
i

sti!ness coe$cient for the ith storey
m

i
mass of the ith storey

t
1

"nal time
u
i

control force for the ith storey
xK g(t) earthquake ground acceleration
x
i

relative displacement for the ith storey
xK
i

acceleration for the ith storey
a stability order of the system
j Lagrangian vector
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